Superconvergence Points for the Spectral Interpolation of Riesz Fractional Derivatives∗
نویسندگان
چکیده
In this paper, superconvergence points are located for the approximation of the Riesz derivative of order α using classical Lobatto-type polynomials when α ∈ (0, 1) and generalized Jacobi functions (GJF) for arbitrary α > 0, respectively. For the former, superconvergence points are zeros of the Riesz fractional derivative of the leading term in the truncated Legendre-Lobatto expansion. It is observed that the convergence rate for different α at the superconvergence points is at least O(N−2) better than the optimal global convergence rate. Furthermore, the interpolation is generalized to the Riesz derivative of order α > 1 with the help of GJF, which deal well with the singularities. The well-posedness, convergence and superconvergence properties are theoretically analyzed. The gain of the convergence rate at the superconvergence points is analyzed to be O(N−(α+3)/2) for α ∈ (0, 1) and O(N−2) for α > 1. Finally, we apply our findings in solving model FDEs and observe that the convergence rates are indeed much better at the predicted superconvergence points.
منابع مشابه
Regularized fractional derivatives in Colombeau algebra
The present study aims at indicating the existence and uniqueness result of system in extended colombeau algebra. The Caputo fractional derivative is used for solving the system of ODEs. In addition, Riesz fractional derivative of Colombeau generalized algebra is considered. The purpose of introducing Riesz fractional derivative is regularizing it in Colombeau sense. We also give a solution to...
متن کاملOn the split-step method for the solution of nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative
The aim of this paper is to extend the split-step idea for the solution of fractional partial differential equations. We consider the multidimensional nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative and propose an efficient numerical algorithm to obtain it's approximate solutions. To this end, we first discretize the Riesz fractional derivative then apply the Crank-...
متن کاملSuperconvergence of Jacobi-Gauss-Type Spectral Interpolation
In this paper, we extend the study of superconvergence properties of ChebyshevGauss-type spectral interpolation in [24, SINUM,Vol. 50, 2012] to general Jacobi-Gauss-type interpolation. We follow the same principle as in [24] to identify superconvergence points from interpolating analytic functions, but rigorous error analysis turns out much more involved even for the Legendre case. We address t...
متن کاملPseudo-spectral Matrix and Normalized Grunwald Approximation for Numerical Solution of Time Fractional Fokker-Planck Equation
This paper presents a new numerical method to solve time fractional Fokker-Planck equation. The space dimension is discretized to the Gauss-Lobatto points, then we apply pseudo-spectral successive integration matrix for this dimension. This approach shows that with less number of points, we can approximate the solution with more accuracy. The numerical results of the examples are displayed.
متن کاملConvergence analysis of spectral Tau method for fractional Riccati differential equations
In this paper, a spectral Tau method for solving fractional Riccati differential equations is considered. This technique describes converting of a given fractional Riccati differential equation to a system of nonlinear algebraic equations by using some simple matrices. We use fractional derivatives in the Caputo form. Convergence analysis of the proposed method is given an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017